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Abstract Increasing demand and costs for healthcare, exacerbated by ageing pop-

ulations and a great shortage of doctors, are serious concerns worldwide. Conse-

quently, this has generated a great amount of motivation in providing better health-

care through smarter healthcare systems. Management and processing of health-

care data are challenging due to various factors that are inherent in the data itself

such as high-dimensionality, irregularity and sparsity. A long stream of research has

been proposed to address these problems and provide more efficient and scalable

healthcare systems and solutions. In this chapter, we shall examine the challenges in
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designing algorithms and systems for healthcare analytics and applications, followed

by a survey on various relevant solutions. We shall also discuss next-generation

healthcare applications, services and systems, that are related to big healthcare data

analytics.

Keywords Healthcare ⋅ Data analytics ⋅ Big data ⋅ Machine learning

1 Introduction

Large amounts of heterogeneous medical data have become available in various

healthcare organizations and sensors (e.g. wearable devices). Such data, which is

called Electronic Health Records (EHR), is the fundamental resource to support

medical practice or help derive healthcare insights. Previously, most of the medical

practices were completed by medical professionals backed by their experiences, and

clinical researches were conducted by researchers via painstakingly designed and

costly experiments. However, nowadays the rapidly increasing availability of EHR

is becoming the driving force for the adoption of data-driven approaches, bringing

the opportunities to automate healthcare related tasks. The benefits may include ear-

lier disease detection, more accurate prognosis, faster clinical research advance and

better fit for patient management.

While the promise of Big Healthcare Analytics is materializing, there is still a

non-negligible gap between its potential and usability in practice. Heterogeneity,

timeliness, complexity, noise and incompleteness with big data impede the progress

of creating value from data. Big Healthcare Analytics is no different in general. To

make the best from EHR, all the information in EHR must be collected, integrated,

cleaned, stored, analyzed and interpreted in a suitable manner. The whole process

is a data analysis pipeline where different algorithms or systems focus on different

specific targets and are coupled together to deliver an end-to-end solution. It can also

be viewed as a software stack where in each phase there are multiple solutions and the

actual choice depends on the data type (e.g. sensor data or text data) or application

requirements (e.g. predictive models or cohort analysis).

There are mainly two types of EHR data, namely electronic medical records
(EMR) and sensor data. There are two major directions of the advancement of Big

Healthcare Analytics related to EMR data and sensor data respectively. One is to

provide better understanding and interpretation about the basic EMR from hospi-

tals. The key challenges are to detect the specific characteristics of EMR data and

build customized solutions for every phase of the data analysis pipeline. The other

is to benefit from the development of new technologies of sensors (e.g. capturing

devices, wearable sensors, and mobile devices) by getting more medical related data

sources. The key challenges are to support real time data processing and real time

predictive models.
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Fig. 1 EMR data consisting of structured data, unstructured text data and image data etc. Source
http://adni.loni.usc.edu/data-samples/

EMR Data: With the development of electronic healthcare information systems,

more and more EMR data is collected from hospitals and ready to be analyzed.

EMR data is time series data that records patients’ visits to hospitals. As shown in

Fig. 1, EMR data typically includes socio-demographic information, patients’ med-

ical history and heterogeneous medical features such as diagnoses, lab tests, med-

ications, procedures, unstructured text data (e.g., doctors’ notes), image data (e.g.,

magnetic resonance imaging (MRI) data) and so on. The effective use of EMR can

be extremely helpful in data analytics tasks such as disease progression modelling,

phenotyping, similar patient and code clustering [54] and so on. However, mining

from EMR data is challenging due to the following reasons. First, EMR data is high-

dimensional as a large number of medical features have to be captured. Second, EMR

data is often dirty or incomplete due to the collection being done over a long period

of time; consequently, this data has to be treated before it can be used. Third, EMR

data is typically collected irregularly by hospitals as patients tend to visit the hospi-

tal only when necessary. Consequently, we have to address challenges such as high-

dimensionality, sparsity, noise, missing data, irregularity and bias when we design

analytics solutions.

Sensor Data: With the wide use of sensors in collecting data for monitoring and

better responding to the situational needs, sensor signals or data streams are also

common in healthcare data. From a big data perspective, such sensor signals exhibit

some unique characteristics. The signals originate from millions of users and sen-

sor/mobile devices, form an extremely large volume of heterogeneous data streams

in real time. Figure 2 shows example networks with various sensors/mobile devices,

where the data streams are generated.

http://adni.loni.usc.edu/data-samples/
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Fig. 2 Network of interconnected sensors (e.g., mobile phones, cameras, microphones, ambient

sensors, smart watches, smart lenses, skin-embedded sensors [114], intestinal gas capsules [48])

that produce healthcare data streams

With the advancement in sensor technology and miniaturization of sensor devices,

various types of tiny, energy-efficient and low-cost sensors are expected to be widely

used for improving healthcare [2, 15, 29]. These sensors form wireless networks

such as Internet of Things [21], wearable networks [5] and in-body nano-scale net-

works [67, 69], and generate massive and various types of data streams. Monitoring

and analyzing such multi-modal data streams are useful for understanding the phys-

ical, psychological and physiological health conditions of patients. For examples,

surveillance cameras, microphones, pressure sensors installed in a house can track

the daily activities of elderly people remotely and can help detect falls
1
; EEG and

ECG sensors can capture changes in patients’ emotions and help control the severity

of stress and depression [89, 91, 116]; Carbon nano-tube sensors measuring oxygen

saturation and pH of the body, which are bio-markers to react against cancer tissues,

help doctors to manage patients [55, 103]. For many healthcare applications, such

data must be acquired, stored and processed in a real-time manner. However, there

are limitations in implementing the real-time processing of enormous data streams

with a conventional centralized solution that does not scale well to process trillions

of tuples on-the-fly [21]. Instead, distributed architectures [1, 35, 47, 60, 75, 115]

are more amenable to scalability and elasticity to cater to different workloads.

Implementing the next-generation smart healthcare systems, especially those for

supporting Big Healthcare Analytics, requires us to carefully examine every phase

in the data analysis pipeline, and adjust the methods by modelling the specific med-

ical context. An overview of existing solutions would be of value to those who

want to implement a new solution or application. With this in mind, we hereby pro-

vide an overview of healthcare data analytics and systems in this chapter. Based on

the different types of EHR data and their characteristics introduced earlier, we next

1
http://www.toptenreviews.com/health/senior-care.

http://www.toptenreviews.com/health/senior-care
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outline several challenges in big healthcare data analytics and review various pro-

posals with respect to these challenges in Sect. 2. Section 3 describes several key

steps for processing healthcare data before doing data analytics. Section 4 presents

various healthcare applications and services that can be supported by data analytics,

and various healthcare systems. We summarize and discuss potential directions in

Sect. 5.

2 Challenges

Mining EMR data is challenging because of the following reasons:

high-dimensionality, irregularity, missing data as well as sparsity, noise and bias.

Figure 3 shows a real-life patient matrix to help readers better understand different

challenges in EMR data. Each challenge will be described in detail.

2.1 High-Dimensionality

EMR data typically consists of hundreds to thousands of medical features. This gives

rise to the high-dimensionality problem. To illustrate, in a sample data set from a

real-world longitudinal medical database of National University Hospital, for 10000

patients over a one year period, there are 4143 distinct diagnosis codes. However,

nearly 80% of the patients have fewer than 10 diagnosis codes and about 70% of

them have fewer than four visits to the hospital, which makes each patient’s feature

vector high-dimensional and sparse. Similar characteristics are observed from public

Fig. 3 EMR data of patients
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data sets. In a diabetes readmission data set from UCI Machine learning Repository,
2

there are about 900 distinct diagnosis codes, but most patients are associated with

fewer than three diagnosis codes. In a subsample of 10000 patients, extracted from a

data set provided by Centers for Medicare and Medicaid Services (CMS) 2008–2010,

we find nearly 88% of the patients have fewer than four diagnosis codes, although

there are 153 distinct diagnosis codes in total.

Dealing with very high-dimensional data is challenging, as it introduces more

parameters into the model, making the model much more complex. Also, high-

dimensional data is highly likely to be associated with noise and sparsity problems.

To address the high-dimensionality problem, there are two main categories of dimen-

sionality reduction methods, namely feature selection and feature extraction.
3

2.1.1 Feature Selection

Feature selection is the process of selecting a subset of relevant predictive features

for model construction [34]. Common feature selection methods include filter meth-

ods, wrapper methods and embedded methods [34]. Filter methods select significant

features independent of models. These methods will rank the features according to

their relations to the predicted features and are usually univariate. Filter methods are

computationally efficient and robust to over-fitting but the relations between features

are neglected. Different from filter methods, wrapper methods take the relationships

between features into consideration. A predictive model will be built to evaluate the

combinations of features and a score will be assigned to each set of feature combina-

tions based on the model accuracy. Wrapper methods take a much longer time since

they need to search a large number of combinations of features. Also, if the data is

not enough, this method will have over-fitting problem. Embedded feature selection

methods shift the process of feature selection into the building process of the model.

Embedded methods have the advantages of the previous two methods, fast and robust

to over-fitting as well as considering relationships between features. Unfortunately,

these methods are not generic as they are designed for specific tasks with certain

underlying assumptions. For healthcare analytics, univariate analysis and stepwise

regression are widely adopted. These two methods belong to filter methods and wrap-

per methods respectively.

In [68], a univariate analysis as well as a multivariate logistic regression with

stepwise forward variable selection are implemented to perform feature selection.

Among the initial 20 or so manually selected features, five of them are finally found

to be significantly associated with readmission within 30 days for a population of

general medicine patients in Singapore and are included in the final model. These

features include age, Charlson comorbidity index, white cell count, serum albumin

and number of emergency department (ED) visits in previous six months. In [53],

a modified stepwise logistic regression is performed to do feature selection in order

2
https://archive.ics.uci.edu/ml/datasets/Diabetes+130-US+hospitals+for+years+1999-2008.

3
http://www.kdd.org/kdd2016/topics/view/dimensionality-reduction.

https://archive.ics.uci.edu/ml/datasets/Diabetes+130-US+hospitals+for+years+1999-2008
http://www.kdd.org/kdd2016/topics/view/dimensionality-reduction
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to predict heart failure readmissions. In this work, with the help of domain experts,

95 condition categories (CC), two demographic variables (age and gender) and two

procedure codes are included as candidate features. After feature selection, 37 fea-

tures are considered in the final model. In [106], a backward stepping feature selec-

tion method is used to select significant features for the final model. 48 patient-level

and admission-level features are collected from 4812 patients that are discharged in

Ontario. Among these variables, only four of them, namely, length of stay in days,

acute (emergent) admission, comorbidity (Charlson comorbidity index score) as well

as number of ED visits during previous six months, are finally found out to be sig-

nificant to the readmission prediction task.

2.1.2 Feature Extraction

Apart from feature selection methods, we may perform feature extraction to learn

low-dimensional latent representations of original features to reduce dimensional-

ity. The main idea of feature extraction is to embed original features in a lower-

dimensional space where each dimension corresponds to a combination of original

features. Compared with the features derived by feature selection methods, the fea-

tures learned by feature extraction are much more difficult to interpret. There are

mainly two categories of feature extraction methods, depending on whether the trans-

forming methods are linear or non-linear. Linear transforming methods may struggle

in discovering complex non-linear relationships between the original features while

non-linear transforming methods are much more difficult to optimize and are more

likely to be trapped in local optima.

In [57], Gaussian process regression is used to infer longitudinal probability den-

sities for uric acid sequences. Following this transforming step, an auto-encoder is

then used to infer meaningful features from the transformed probability densities.

When configuring the hidden layer of the deep learning model, the dimension of the

hidden layer could be set smaller than the visible layer so as to avoid learning the

identity transformation.

In [105], a modified Restricted Boltzmann Machine (RBM) is trained to embed

medical objects in a low-dimensional vector space which works as a new representa-

tion for the raw high-dimensional medical feature vector. This new low-dimensional

representation is then used for assessing suicide risk.

In addition to learning non-linear low-dimensional hidden representations using

deep learning models, dimensionality reduction can also be achieved through princi-

pal component analysis (PCA). A stochastic convex sparse PCA method is developed

in [7] to effectively perform sparse PCA on EMR data so that the derived represen-

tation is both low-dimensional and interpretable.
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2.2 Irregularity

Irregularity is one of the bothersome characteristics of EMR data and provides chal-

lenges for EMR data analytics. Irregularity is caused by the fact that patients will

only have EMR data recorded when they visit hospital. As a consequence, patients’

EMR data is organized into a “longitudinal patient matrix” where one dimension rep-

resents various medical features and the other is time [108, 118], and the consecutive

patients’ EMR records will be scattered within uneven-spaced time spans. Moreover,

for different patients, the granularity of medical records varies significantly and the

time periods between visits also vary a lot.

Generally, there are three categories of methods to alleviate this irregularity issue.

The details are demonstrated as follows.

2.2.1 Use of Baseline Features

The first kind of methods is to utilize patients’ “baseline” features (i.e., the data

recorded when patients visit hospital to perform examinations for the first time) for

EMR data analytics tasks.

For instance, baseline MRI scans [100] are used to predict patients’ clinical scores

including Mini-Mental State Examination (MMSE), Dementia Rating Scale (DRS),

Auditory Verbal Learning Test (AVLT) and Alzheimer’s disease Assessment Scale-

Cognitive Subtest (ADAS-Cog). In this work, a relevance vector regression, a novel

sparse kernel method in a Bayesian network, is employed. Similarly, patients’ base-

line MRI features (together with baseline MMSE features, and some demographic

features) [27] are used to predict the one-year changes in the MMSE feature. The

whole process entails data collection and extraction from MRI data, feature dimen-

sionality reduction via PCA, prediction of future MMSE changes via robust linear

regression modelling. In [107], the association between patients’ baseline features

and changes in severity-related indicators is examined via linear mixed-effects mod-

els and the baseline features are used to predict the conversion time from amnes-

tic mild cognitive impairment (aMCI) to Alzheimer’s disease via Cox proportional

hazards models. In [95], a risk score based on patients’ baseline features and demo-

graphic features is proposed to predict the probability of developing Type 2 diabetes.

Specifically, a multivariate Cox regression model is used to assign weights to differ-

ent variables. In [26], Alzheimer’s disease patients’ baseline features are used to pre-

dict their probability for different class memberships representing different severity

levels based on a multivariate ordinal regression model using Gaussian process that

is implemented in a Bayesian network.

Another line of research focuses on multi-task learning [14]. Several works [80,

117, 119] choose Alzheimer’s disease patients as the cohort and predict their future

severity in terms of MMSE values and ADAS-Cog values in multiple timepoints.

The prediction in each timepoint is modelled as a regression task. These works

utilize patients’ baseline features and employ multi-task learning to capture the
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relationships between tasks (i.e. the prediction tasks in multiple future timepoints),

where all these tasks are trained together with constraints on the changes within

consecutive timepoints. However, there are several minor differences between these

two methods. Besides predicting patients’ future severity, [119] manages to select

a common set of features that are significant to all prediction tasks via a l2,1-norm

penalty term. [117] extends [119] in that it not only selects a common set of features

for all tasks, but also selects task-specific bio-markers via a l1-norm penalty term.

[80] proposes a further improvement of regression performance to consider the con-

sistency for prediction utilizing multi-modal data (i.e., multiple sources/forms of

medical features), and handles the missing data in both modality data and label data

via an adaptive matrix factorization approach.

The prediction performance of this category may be limited by only making use

of baseline features. This is due to under-utilization of time-related features. Since

patients’ health conditions tend to change along with time, it is of vital importance

to utilize as many time-related features available as possible other than just baseline

features. Another limitation specific to multi-task learning methods is that they can

only deal with linear relationships among features. However, in the medical area,

relationships between medical features, relationships between medical features and

labels can be quite complicated and may not be described using simple linear rela-

tionships.

2.2.2 Data Transformation

In regularly sampled series, lots of successful algorithms have been developed. How-

ever, there remain many challenging problems in handling irregular data. In the med-

ical area, we are faced with longitudinal, irregularly collected EMR data. To alleviate

this problem, some existing works organize patients’ EMR data along with time and

have divided such longitudinal data into “windows”. For instance, in [110], a prob-

abilistic disease progression model based on Markov jump process is proposed to

model the transition of disease states for Chronic Obstructive Pulmonary Disease

(COPD) patients. The EMR data is processed by segmenting the time dimension

into non-overlapping windows (i.e., encounters) with a length of 90 days, and the

regularly reorganized data is then used for further modelling and analysis.

Similarly, in [18], two kinds of features are used: daily recorded features and static

features. These two kinds of features are exploited to distill knowledge from deep

learning models (including Stacked Denoising Auto-encoder and Long Short-Term

Memory (LSTM)) by making use of Gradient Boosting Trees.

In [62], training data is processed by resampling to an hourly rate, where the mean

measurement is applied in each hourly window. The application task is to classify 128

medical diagnoses employing an LSTM model [40] to capture the dynamic patterns

in input features. In [16], the dynamic changing trends are captured using an alterna-

tive approach. After preprocessing data into overlapping “windows”, the occurrence

of a certain disease is predicted based on Multi-Layer Perceptron (MLP) with prior

domain knowledge.
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While transforming irregular data into regular time series allows us to employ

some efficient methods (such as linear algebra) directly, we need to be aware of the

side effects associated with such method. For instance, the resampling method may

possibly lead to the sparsity and missing data problems because for some features,

there could be no observations during certain time windows. Moreover, by dividing

longitudinal data into windows, the model may be less sensitive to capturing short-

time feature patterns.

2.2.3 Direct Use of Irregular Data

Contrary to the methods mentioned above, there are approaches that make use of

medical features with irregular, accurate time information directly. In [86], the com-

putation of LSTM model is adapted by incorporating the time spans between con-

secutive medical features to handle the irregularity. The proposed model is applied

to model disease progression, recommend interventions and predict patients’ future

risks. Similarly, models based on Gated Recurrent Units (GRU) [19] have been pro-

posed which simultaneously consider the masking and time durations between con-

secutive medical features in a decay term [17]. Through this decay term, the proposed

method is designed to handle irregular data directly.

This category of methods demonstrates the possibility of fully utilizing avail-

able data. However, when parameterizing time between consecutive medical fea-

tures, these methods model the decay term using a heuristic method, such as a

monotonically non-increasing function based on logarithm or a parametric method

to learn a time weight matrix [86]. Such heuristic methods may cause either under-

parameterization or over-parameterization.

2.3 Missing Data and Data Sparsity

Typically, missing EMR data can be caused by either insufficient data collection or

lack of documentation. In data collection problem, patients are not checked specifi-

cally for a certain medical feature. In documentation problem, patients are checked

for a certain feature, but either their outcomes are negative, which means that they

are not needed to be documented, or the outcomes are positive but are not recorded

due to human errors [112]. The missing data problem is further exacerbated by data

sparsity due to the fact that most patients only pay a few visits to the hospital, and

in most visits, only a couple of medical features are recorded. Fortunately, missing

data and sparsity problems share many common techniques for solving them.

In [93], various imputation methods for handling missing data are described and

broadly categorized into two categories. The first category is under the missing at
random assumption, including methods from simple ones such as case deletion,

mean imputation, to the advanced ones such as maximum likelihood and multiple

imputation. The second category is under the assumption of missing not at random,

which mainly includes selection models and pattern-mixture models.
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In [18], a simple imputation strategy is adopted in solving missing temporal fea-

tures: for features with binary values, the majority value is used for filling; for fea-

tures with numerical values, the mean values are used for imputation. In [62], the

forward-filling and back-filling methods are proposed to fill the missing data during

a resampling process. For a feature that is totally missing, the clinically normal value

suggested by medical experts is used instead.

Apart from solving the missing data problem through imputation in preprocess-

ing phase, a recent work [17] addresses missing data by incorporating two missing

patterns: masking and time duration inside the objective function of the deep learn-

ing model structure. The proposed method is designed to capture the informative

missing EMR data.

For sparsity, the above-mentioned missing data imputation methods, such as mean

imputation, forward-filling and back-filling, are also widely used to get a dense

patient matrix in order to solve the sparsity problem. Matrix densification/completion

is another method to solve the sparsity problem [118]. The basic idea of matrix

completion is to recover unknown data from a few observed entries. The algorithm

assumes that the completed data for each patient has the factorization form of two

matrices. Thus the data can be completed by multiplying these two derived matrices

to densify the raw patient matrix.

2.4 Noise

EMR data is usually noisy due to various reasons, such as coding inaccuracies,

inconsistent naming conventions, etc. Many machine learning researchers tend to

learn latent representations to derive more robust representations in order to solve

this problem. These methods include Gaussian regression models, topic models or

factorization-based methods. A Gaussian process regression is proposed in [57] to

transform the raw noisy data (uric acid sequences) into a continuous longitudinal

probability density function. This transforming step assumes that each uric acid

sequence is a set of possibly noisy samples taken from the source function. After-

wards, instead of operating on the noisy raw data, an auto-encoder takes the mean

vector of the learned Gaussian distribution to derive hidden representations. In [39],

the noise problem is resolved by learning meaningful medical concepts (or pheno-

types) in the form of tensors. Its insight is to map raw EMR data into medical con-

cepts, learn latent bases of the raw data and perform predictive tasks in the latent

space. Similar to [39], [111] factorizes the raw patient tensor into several interac-

tion tensors, each representing a phenotype. Experimental results suggest that this

method is robust to noise because it not only depends on the observed tensor but also

on various other constraints to derive the phenotype tensors. Another latent variable

model to solve the noise problem is proposed in [88], which leverages a topic mod-

elling technique to handle noise in the raw EMR data by modelling the relationships

between observations that are implicit in the raw data.
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2.5 Bias

Bias is also an outstanding characteristic of EMR data, which is regarded as a non-

negligible issue in healthcare data analytics [37, 41, 42, 87]. Bias is often considered

as biased sampling, which means that the sampling rate is dependent on patients’

states, and also dependent on doctors’ judgment on patients. Consequently, patients

are sampled more frequently when ill, but are sampled less frequently when com-

paratively healthier [42]. Other sources of bias include (i) the same patient may visit

different healthcare organizations for medical help and different organizations do

not share information between each other; (ii) patients fail to follow up in the whole

medical examination process; (iii) the recorded data in one specific healthcare orga-

nization is incomplete [37].

In [87], bias in the lab tests of EMR data is modelled by examining the relation-

ships between concrete lab test values and time intervals between consecutive tests,

and exploiting the lab test time patterns to provide additional information. Further-

more, different lab test time patterns are identified so that they can be separately

modelled when EMR data analytics and experiments are performed. The limitation

of this method is that it can only model the bias based on coarse-grained patterns,

and the intra-pattern biases remain to be unsolved.

The influence of time parametrization in EMR data analytics is studied in [42],

in which three methods of parameterizing time are compared: sequence time (i.e.,

the sequence of measurements’ occurrences after a specified start time), clock time

(i.e., the absolute time of measurements) and an intermediate warped time which is

a trade-off between the previous two. The study finds that the sequence time could

perform the best among three methods, perhaps due to clinicians’ tendency to change

sampling rate according to patients’ severity. However, the proposed time parame-

terization methods are heuristic in nature and may cause under-parameterization or

over-parameterization.

2.6 Knowledge Base

Over the years, a large number of knowledge sources in the healthcare domain have

been built and maintained to provide people with easy access to comprehensive med-

ical information. Common knowledge sources include International Classification of

Diseases (ICD-9 or ICD-10) for diagnoses, Healthcare Common Procedure Coding

System (HCPCS) for procedures, Logical Observation Identifiers Names and Codes

(LOINC) for laboratory tests. Besides, Unified Medical Language System (UMLS)

maintains useful relationship knowledge, and Lab Tests Online
4

explains the rela-

tionships between lab tests. Incorporating structured medical knowledge provides

a good basis to construct intelligent predictive models, which can then be used to

improve healthcare data analytics in terms of interpretability and predictive ability.

4
https://labtestsonline.org/.

https://labtestsonline.org/
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In [111], existing medical knowledge is incorporated into the tensor factorization

algorithm in order to derive more fine-grained phenotypes. In particular, the algo-

rithm can derive different sub-phenotypes which fall into a broader phenotype. This

can help to stratify patients into more specific subgroups.

Since knowledge has been successfully incorporated into deep learning models

in natural language processing field [9], many deep learning researchers are head-

ing towards incorporating existing medical knowledge into deep learning models in

order to improve interpretability as well as performance of the model. In [16], med-

ical ontology knowledge is incorporated into the MLP as a regularization term so as

to improve the performance of the model. A similar approach is developed in [105],

in which structural smoothness is incorporated into the RBM model via a regular-

ization term. Its basic underlying assumption is that two diseases which share the

same parent in the taxonomy are likely to possess similar characteristics.

3 Key Steps for Processing

Before EHR data (including EMR data and sensor data) is input into various models

for analysis, data needs to go through several steps of processing. Figure 4 illustrates

the pipeline for big data analysis [22, 45]. Firstly, EHR data needs to be recorded,

accessed and acquired. Secondly, obtained raw EHR data is probably heterogeneous,

composed of structured data, free-text data (such as doctors’ notes), image data (such

as MRI images) and sensor data. Hence, data extraction is of great concern for fur-

ther analysis. Furthermore, data cleansing is needed to remove inconsistencies and

errors, and data annotation with medical experts’ assistance contributes to effective-

ness and efficiency of this whole process from acquisition to extraction and finally

cleansing. Thirdly, data integration is employed to combine various sources of data,

such as different hospitals’ data for the same patient. Finally, processed EHR data

is modelled and analyzed, and then analytics results are interpreted and visualized.

In this section, several key steps for processing EHR data, namely, data annotation,

data cleansing, data integration and data analytics/modelling are described in detail

respectively.

Fig. 4 The big data analysis pipeline [45]
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3.1 Data Annotation

Incompleteness is the leading data quality issue when using EHR data to build a

learning model [10], since many study variables have missing values to various

degrees. The uncertainty of EHR data can be resolved by model inference using

various learning techniques [110]. However, the rationale of most healthcare prob-

lems can be too complex to be inferred by machines simply using limited EHR data.

In such cases, enriching and annotating EHR data by medical experts are the only

choice to help the machine to interpret EHR data correctly.

The acquisition of supervised information requires annotations by experts, result-

ing in a costlier exploitation of data. To reduce the cost involved in data annotation,

voluminous research works have been conducted. In general, most of the research

issues belong to active learning, which aims to only annotate those important data

instances while inferring others and thereby the total number of annotated data is

significantly reduced. The key idea of active learning is that learning algorithms can

achieve higher accuracy with fewer training labels if they can choose the data from

which they learn. The general solutions of active learning include reducing the uncer-

tainty in training models [59], differentiating hypotheses which are consistent with

the current learning set (i.e. Query-By-Committee) [78, 97, 102], maximizing the

expected model change after receiving a new sample [96], minimizing the expecta-

tion [90] or variance [20] of the empirical loss, maximizing the information density

among the whole query space [96] and etc.

However, in current status, all these methods have limitations in real healthcare

applications. The fundamental reason is that the supervised information in some

complex analytics tasks may be hard to be quantified by a human. Since most easy

annotating tasks can usually be well recognized by simply using machine efforts,

the required tasks for expert annotation are usually complex jobs such as inference

flow in a medical concept graph. These categories of supervised information can

hardly be annotated via quantified labels which are well studied in the active learning

community and integrated to the healthcare analytics system.

3.2 Data Cleansing

In this section, we discuss the importance of data cleansing for EHR data (includ-

ing EMR data and sensor data). As mentioned in Sect. 2.4, EMR data is typically

noisy due to several reasons, for example, coding inaccuracies, erroneous inputs, etc.

Before raw EMR data is ready for use, we should develop data cleansing techniques.

This requires us to understand the healthcare background of the dirty EMR data and

work with domain experts to achieve better cleansing performance. Data cleansing

is quite challenging when we consider sensor data. Data from sensor/mobile devices

is inherently uncertain due to lack of precisions, failures of transmissions and insta-

bility of battery life, etc. Thus, it is essentially required to (i) identify and remove
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inaccurate, redundant, incomplete and irrelevant records from collected data and (ii)

replace or interpolate incorrect and missing records with reasonably assigned val-

ues. These processes are expected to improve data quality assessed by its accuracy,

validity and integrity, which lead to reliable analytics results.

3.3 Data Integration

Data integration is the process of combining heterogeneous data from multiple

sources to provide users with a unified view. [25, 32, 36] explore the progress that

has been made by the data integration community and some principles, as well as

theoretical issues, are introduced in [24, 58].

Data integration techniques for EMR data and sensor data have different charac-

teristics. For EMR data, we need to integrate heterogeneous EMR data from different

sources including structured data such as diagnoses, lab tests, medications, unstruc-

tured free-text data like discharge summary, image data like MRI, etc. Different from

EMR data, sensor data is generated by various types of sensor/mobile devices at dif-

ferent sampling rates. The heterogeneity of abundant data types brings another chal-

lenge when we integrate data streams due to a tradeoff between the data processing

speed and the quality of data analytics. The high degree of multi-modality increases

the reliability of analytics results, but it requires longer data processing time. The

lower degree of multi-modality will improve data processing speed but degrade the

interpretability of data analytics results. The efficient data integration helps reduce

the size of data to be analyzed without dropping the analytics performance (e.g.,

accuracy).

3.4 Data Analytics and Modelling

After the three processing steps described above, we focus on EHR data analytics

and modelling part. We have proposed a healthcare analytics framework as shown

in Fig. 5. This framework is composed of four phases which can give a better repre-

sentation of medical features, and exploit the intrinsic information in EHR data and

therefore, benefit further data analytics performance. The key idea for each phase is

demonstrated as follows.

EHR Regularization: In this step, we focus on transforming the EHR data into a

multivariate time series, solving the problems of irregularity, missing data and data

sparsity, and bias as discussed in Sect. 2. The output of this phase is an unbiased,

regularly sampled EHR time series.

Medical Feature Representation: In this phase, we aim to represent the medical

features to reflect their feature-time relationships. To be specific, we learn for each

medical feature whether this feature has influence after a certain time period and

which features it poses influence on.
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Fig. 5 Our healthcare analytics framework

Medical Feature Regularization: After regularizing EHR data into a more suitable

format for analytics and representing features to reveal underlying relationships, we

now turn to re-weight medical features for better analytics results. This re-weighting

can be achieved by trading-off features’ confidence and significance and differenti-

ating common from rare, significant from noisy features.

Medical Knowledge Support: In this phase, we propose to instil medical knowl-

edge into typical machine learning and deep learning models for better analytics

performance. This will involve finding the best structures to represent existing med-

ical knowledge (i.e., domain knowledge) and developing the model training scheme

using such knowledge.

4 Healthcare Applications

This section presents several healthcare applications, services and systems that are

supported by data analytics in EMR data and sensor data. Figure 6 illustrates some

of them using EMR data.

4.1 Applications for EMR Data

4.1.1 Clustering

Clustering can help detect similar patients or diseases. Since the raw healthcare data

is not clean, there are usually two kinds of approaches for researchers to derive mean-

ingful clusters. The first approach tends to learn robust latent representations first,

followed by clustering methods while the other approach adopts probabilistic cluster-

ing models which can deal with raw healthcare data effectively. In [105], diseases are

first embedded into 200-dimension using a modified RBM model, eNRBM model.

These latent 200-dimension hidden vectors are then projected into 2D space using

t-SNE. In this 2D space, we can see several meaningful groups consisting of related

diagnoses and procedures. Similar to [79, 105] embeds raw patient vectors into latent

vectors using a modified RBM, then patient clustering is performed on these latent
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Fig. 6 An illustration of some applications using EMR data analytics. From medical history, we

can perform patient clustering, code clustering and phenotyping tasks, while regarding prediction

of patients’ future, we can do disease progression modelling and 30-day readmission prediction [53]

vectors. Experiments show some groups of patients are closely related to a specific

disease condition (say Type I diabetes). [98] identifies multivariate patterns of per-

ceptions using cluster analysis. Five different patient clusters are finally identified

and statistically significant inter-cluster differences are found. In [72], a probabilistic

clustering model is applied for multi-dimensional, sparse physiological time series

data. It shows that different clusters of patients have large differences in mortality

rates. Moreover, this clustering model can be used to construct high-quality predic-

tive models. Similarly, in [94], a probabilistic sub-typing model is proposed to cluster

time series of clinical markers in order to identify homogeneous patient subgroups.

4.1.2 Phenotyping

Computational phenotyping has become a hot topic recently and has attracted the

attention of a large number of researchers because it can help learn robust repre-

sentations from sparse, high-dimensional, noisy raw EMR data. It has several kinds

of forms including (i) rules/algorithms that define diagnostic inclusion criteria (ii)

latent factors or latent bases for medical features [49].
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Traditionally, doctors regard phenotyping as rules that define diagnostic or inclu-

sion criteria. The task of finding phenotypes is achieved by a supervised task [73].

A number of features are first chosen by domain experts, then statistical methods

such as logistic regression or chi-square test are performed to identify the significant

features for developing acute kidney injury during hospital admissions. PheKB
5

is a

phenotype knowledge base that shows many rules for different diseases and medical

conditions. Traditional methods using statistical models are easier to be implemented

and interpreted, but they may require a large amount of human intervention.

Recently, machine learning researchers are working on high-throughput methods

to derive more meaningful phenotypes. These works mainly discover latent factors or

bases as phenotypes. [39] first constructs a three-dimensional tensor which includes

patients, diagnoses as well as procedures to represent the raw input data. Then this

tensor is split into several interaction tensors and a bias tensor. Each interaction ten-

sor is a phenotype and the non-zero features in each tensor can be regarded as the

features of the corresponding phenotype. [111] is similar to [39], and it represents

phenotypes in the form of interaction tensors. However, different from [39], it empha-

sizes on imposing knowledge into the learned phenotypes and proposes to derive dis-

tinct phenotypes. In [118], raw patient data is represented using a two-dimensional

longitudinal patient matrix with one axis being time and the other being medical fea-

tures. Then the algorithm decomposes this longitudinal patient matrix into a latent

medical concept mapping matrix and a concept evolution matrix. Phenotypes can

then be obtained from the latent medical concept mapping matrix by discovering

feature groups inside the matrix. Different from traditional statistical methods, phe-

notyping algorithms based on high-throughput machine learning methods can gen-

erate a number of phenotypes at the same time. Moreover, some of the unsupervised

algorithms can derive phenotypes which are independent of prediction tasks and are

more general.

Deep learning achieves record-breaking performance in a number of image and

speech recognition tasks for its distinguished ability to detect complex non-linear

relations from raw data and the ability to learn robust high-level abstractions [8,

50]. Since body system itself is complex and highly non-linear, it may be poten-

tial for us to utilize deep learning methods to perform phenotyping tasks. [57] is

an early work that applies deep learning models in computational phenotyping. It

first applies Gaussian process regression to transform the uric acid sequence to a

probability density function. Then an auto-encoder is used to learn the hidden rep-

resentations of Gaussian distribution’s mean vectors. The learned weights of the

auto-encoder are regarded as phenotypes and the learned features are also visual-

ized. Similar to [57, 105] utilizes a simple two-layer unsupervised deep learning

model, RBM, to learn hidden representations of patients’ raw input vectors (aggre-

gated counts of medical features, such as diagnoses, procedures). Each unit of this

RBM’s hidden layer is regarded as a phenotype and this hidden vector is then used

for clustering and classification tasks. Different from [57] and [105] which employ

an unsupervised model, [16] utilizes a supervised MLP model to extract phenotypes

5
https://phekb.org/.

https://phekb.org/
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from ICU time-series data. In order to visualize MLP’s ability to disentangle factors

of variation, the authors apply tools from causal inference to analyze the learned

phenotypes quantitatively and qualitatively.

4.1.3 Disease Progression Modelling

Disease progression modelling (DPM) is to employ computational methods to model

the progression of a specific disease [76]. With the help of DPM, we can detect a

certain disease early and therefore, manage the disease better. For chronic diseases,

using DPM can effectively delay patients’ deterioration and improve patients’ health-

care outcomes. Therefore, we can provide helpful reference information to doctors

for their judgment and benefit patients in the long run.

Statistical Regression Methods

Traditionally, many related works employ statistical regression methods for DPM,

which can model the correlation between patients’ medical features and patients’

condition indicators [27, 95]. Then, via such correlation, we can have access to the

progression of patients with patients’ features. For example, in [95], an accurate risk

score model through a multivariate Cox regression model is proposed for predicting

patients’ probability of developing diabetes within five years. Similarly, in [27], a

robust linear regression model is employed to predict clinically probable Alzheimer’s

disease patients’ MMSE changes in one year.

Another line of research focuses on “survival analysis”, which is to link patients’

disease progression to the time before a certain outcome. The linking is accom-

plished via a survival function. For instance, in [85], a disease progression model

is proposed to predict liver transplant patients’ long-term survival. The objective

is to stratify patients into clusters according to their survival characteristics and

then assign different intervention strategies to different patient clusters. Similarly,

in [107], the time of patients’ progression from amnestic mild cognitive impairment

to Alzheimer’s disease is studied.

While statistical regression methods are shown to be efficient due to their simple

models and computation, we should note that this is accomplished with an underlying

assumption that the progression (i.e. medical time-series data) of a disease follows a

certain distribution. However, for real-life applications, this assumption may not be

true, and the performance of statistical regression methods would suffer. Therefore,

it could be difficult to generalize such methods to most clinical applications where

the disease progression cannot be abstracted by a certain simple distribution.

Machine Learning Methods

Existing works which employ machine learning methods to solve DPM problem are

quite various, from graphical models including Markov models [44, 110], to multi-

task learning methods [80, 117, 119] and to artificial neural networks [101].
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In [110], a Markov jump process is employed to model COPD patients’ transi-

tion behaviour between disease stages. In [44], a multi-state Markov model is pro-

posed for predicting the progression between different stages for abdominal aortic

aneurysm patients considering the probability of misclassification at the same time.

Due to the structure as directed graphs, these methods have the advantages of good

causality and interpretability. However, medical experts need to be involved to deter-

mine the causal relationships during model construction.

Another category of methods is to employ multi-task learning. In [117, 119], the

DPM problem is formalized in the multi-task learning setting as predicting patients’

future severity in multiple timepoints and select informative features of progression.

Also with a multi-task learning method, in [80], the consistency between multiple

modalities is considered in the objective function and missing data problem is han-

dled. The limitations of multi-task learning methods are two-fold. First, they only

make use of medical features corresponding to patients’ first visits to the hospital

instead of time-related features. Second, they can only deal with linear relationships

in the model.

Deep Learning Methods

In [101], an artificial neural network is employed to predict the recurrence of breast

cancer after surgery. With a deeper neural network than this, deep learning models

become more widely applicable with its great power in representation and abstraction

due to its non-linear activation functions inside. For instance, in [86], a variant of

LSTM is employed to model the progression of both diabetes cohort and mental

health cohort. They use “Precision at K” as the metric to evaluate the performance

of models. However, the lack of interpretability is a possible limitation of these deep

learning methods. Furthermore, more training data is of vital importance in order to

improve deep learning models’ performance.

4.1.4 Image Data Analysis

MRI is widely used to form images of the body using strong magnetic fields, radio

waves, and field gradients. Analyzing these images is beneficial for many medical

diagnoses and a wide range of studies focus on MRI image data classification or seg-

mentation tasks. In [52], a novel classification method that combines both fractal and

GLCM features is proven to be more effective for MRI and CT Scan Medical image

classification than previous models which only utilize GLCM features. A model that

combines deep learning algorithms and deformable models is developed in [3] for

fully automatic segmentation of the left ventricle from cardiac MRI datasets. Exper-

iments show that by incorporating deformable models, this method can achieve bet-

ter performance in terms of accuracy and robustness of the segmentation. In [4], a

review of recent methods for brain MRI image segmentation is presented.
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4.2 Applications for Sensor Data

4.2.1 Mobile Healthcare

Healthcare for ageing population has become a major focus, especially in developed

countries. Due to the shortage of clinical manpower, there has been a drive toward

using ICT (information and communication technology), called mobile healthcare

or mHealth.
6

With the advanced technologies including machine learning and high-

performance computing, personalized healthcare services will be provided remotely,

and diagnoses, medications and treatments will be fine-tuned for individuals on the

basis of spatio-temporal and/or psycho-physiological conditions.

Human activity recognition (HAR) is one of the key technologies for mHealth.

HAR research is mainly classified into two groups in terms of approaches, namely the

video-based and the wearable device-based. The video-based approach continuously

tracks human activities through cameras deployed in rooms; however, it raises pri-

vacy issues and requires the targeted person to remain within the vicinity of the cam-

era [56]. Moreover, the feature extraction from the captured video/images requires

complex computation for further analytics [28]. Because of these limitations, there

has been a shift towards the use of wearable sensors requiring less data processing.

Nowadays, the activity recognition is implemented on smart devices for online

processing [13, 99, 104] while it is done offline using machine learning tools in

backend machines or servers. It has enabled smart healthcare applications such as

fitness assessment [64], life logging,
7

and rehabilitation [74] where the user activities

can be tracked anytime and anywhere.

From the data analytics perspective, [33] discusses the feature extraction algo-

rithm for HAR using only a single tri-axial accelerometer. Relevant and robust fea-

tures are successfully selected and the data size is reduced; thereby, the processing

speed increases without degrading accuracy.

Retrieved features corresponding to activities specify patterns, and the patterns

are used for classification or modelling. Sliding window methods are typically used

for static or periodic activities while sporadic activities can be recognized using

template matching approaches [71] or Hidden Markov Modelling (HMM) [12, 84].

In [83], a deep learning model is designed using convolutional neural networks and

LSTM recurrent neural networks, which captures spatio-temporal patterns of signals

from wearable accelerometers and gyroscopes.

4.2.2 Environment Monitoring

Another interesting healthcare application integrates chemical sensors [6, 66, 70]

for detecting the presence of specific molecules in the environment. For example,

we can collect Pollutant Standards Index (PSI) data that reflects six pollutants (i.e.,

6
http://www.mobilehealthsummit.ca.

7
http://www.sonymobile.com/global-en/apps-services/lifelog.

http://www.mobilehealthsummit.ca
http://www.sonymobile.com/global-en/apps-services/lifelog
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sulfur dioxide (SO2), particulate matter (PM10) and fine particulate matter (PM2.5),

nitrogen dioxide (NO2), carbon monoxide (CO) and ozone (O3)), from individual

users and construct a fine-grained pollution map together with images and location

information. The environmental monitoring for haze, sewage water and smog emis-

sion etc. has become a significant worldwide problem. Combined with the cloud

computing technology, a large number of smart mobile devices make a distributed

data collection infrastructure possible, and the recent scalable, parallel, resource effi-

cient, real-time data mining technologies have enabled smart device-based data ana-

lytics [65, 120].

[77] proposes the Personal Environmental Impact Report (PEIR) system that uses

location information sampled from smartphones and calculates personalized esti-

mates of environmental impact and exposure. The running PEIR system, which runs

GPS data collection at mobile devices and the HMM-based activity classification at

servers before computing the PEI values, is evaluated. A major contribution of their

work is that this platform can be used for various targets such as traffic condition

measuring, environmental pollution monitoring, and vehicle emission estimating.

4.2.3 Disease Detection

Biochemical-sensors deployed in/on the body can detect particular volatile organic

compounds (VOCs). Many studies [11, 23, 92] have unveiled the relationships

between VOCs and particular diseases corresponding to VOCs, as summarized in

Table 1. The big potential of such sensor devices and the big data analytics of VOCs

will revolutionize healthcare both at home and in hospital.

Developments of nano-sensor arrays and micro electro mechanical systems have

enabled artificial olfactory sensors, called electronic noses [30, 66], as tiny, energy

efficient, portable devices. [30] discusses the essential cause of obesity from over-

eating and an intake of high-calorie food, and presents the way to compute energy

expenditure from exhaled breath.

In [51], nano-enabling electrochemical sensing technology is introduced, which

rapidly detects beta-amyloid peptides, potential bio-markers to diagnose Alzheimer’s

disease, and a tool is developed to facilitate fast personalized healthcare for AD mon-

itoring.

Table 1 List of volatile

organic compounds related to

particular diseases

Volatile organic compound Relevant disease

Acetoin, 1-butanol Lung cancer

Aceton Diabetes

Etan, pentan Asthma

Ammonia Hepatic encephalopathy

Hydrogen, metan Maldigestion syndrome

Toluen Thinner addiction

Trimethylamine Renal failure
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4.3 Healthcare Systems

Instead of solving individual problems, a number of healthcare systems have been

designed and built to serve as platforms for solving the problems described above.

Now we shall discuss several representative healthcare systems.

HARVEST [38] is a summarizer for doctors to view patients’ longitudinal EMR

data at the point of care. It is composed of two key parts: a front-end for better

visualization; a distributed back-end which can process patients’ various types of

EMR data and extract informative problem concepts from patients’ free text data

measuring each concept via “salience weights”.

miniTUBA [113] is designed to assist clinical researchers to employ dynamic

Bayesian networks (DBN) for data analytics in temporal datasets. The pipeline of

miniTUBA includes logging in the website, inputting data as well as managing

project, constructing DBN models, analyzing results and doing prediction in the

end. Users can use miniTUBA to discover informative causal relationships for better

inference or prediction.

In [43], a system which focuses on data-driven analytics for personalized health-

care is proposed. The applications supported in this system include analyzing patient

similarity, constructing predictive models, stratifying patients, analyzing cohorts and

modelling diseases. The target is to achieve personalized healthcare resource utiliza-

tion and deliver care services at low costs.

To provide better support for Big Healthcare Analytics, we have been implement-

ing various software systems that form an end-to-end pipeline from data acquisition

and cleansing to visualization. We call the system GEMINI [61], whose software

stack is depicted in Fig. 7. We are addressing various healthcare analytics problems,

such as phenotyping, disease progression modelling, treatment recommendation etc.

We shall introduce each component of our software stack via the example process

of doing EMR data analytics in the following.

We work on the longitudinal EMR dataset from the National University Hospi-

tal. We encounter the various challenges as discussed in Sect. 2; hence, we need to

process the data, through data cleansing and data integration, before we can conduct

any data analytics. Even though we want to automate the processing and relieve the

burden on doctors, EMR data cannot be cleaned and integrated effectively without

doctors’ assistance. Hence, we leverage automatic methods and doctors’ participa-

tion with their expertise domain knowledge. DICE is our general data cleansing and

integration platform that exploits both doctors’ expertise and knowledge base. Addi-

tionally, to assist in the data cleansing and integration, CDAS [63] which is a crowd-

sourcing system, selects meaningful representative tasks for the clinicians to resolve

so as to reduce the overall efforts and costs. Ultimately, we tap onto the clinicians

who are the subject matter experts for their knowledge, without over imposing on

their time, to improve the quality of the data and the analytics process [61, 81].
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Fig. 7 GEMINI healthcare software stack

Due to the value of the data and the need to maintain it for a long period of time,

we have designed and implemented UStore, which is a universal immutable storage

system, to store the data. We process the data in epiC [47], which is a distributed and

scalable data processing system based on Actor-like concurrent programming model.

By separating computation and communication, this system can process different

kinds of data (structured data, unstructured data and graph data) effectively, and

also supports different computation models. However, epiC provides only database-

centric processing and analytics such as aggregation and summarization. In order to

provide deep analytics, we have implemented a generic distributed machine learn-

ing/deep learning platform, called Apache SINGA [82, 109]. We are implementing

our deep learning models on top of Apache SINGA for analytics on various diseases.

For behavioural analysis of patients, we employ “cohort analysis” which was orig-

inally introduced in social science [31]. Cohort analysis has a wide range of health-

care applications, such as testing the hypothesis of a new treatment, seeing how

similar patients in a hospital database are doing compared with the specific indexed

patient, etc. For our applications, we have built CohAna [46], a column-based cohort

analysis engine with an extended relation for modelling user activity data and a few

new operators to support efficient cohort query processing.

To enable the clinicians to visualize the data and analytics results, we have devel-

oped iDAT, an exploratory front-end tool that allows interactive drill-down and

exploration.
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5 Summary and Discussions

In this chapter, we summarize the challenges of Big Healthcare Analytics and their

solutions to relevant applications from both EMR data and sensor data. The chal-

lenges mainly consist of high-dimensionality, irregularity, missing data, sparsity,

noise and bias. Besides the basic model construction for analytics, we discuss four

necessary steps for data processing, namely data annotation, data cleansing, data

integration and data analytics/modelling. Based on an examination of various types

of healthcare analytics on both EMR data and sensor data, the data analytics pipeline

is still the foundation for most healthcare applications. However, specific algorithms

which are adopted must be adjusted by modelling the unique characteristics of med-

ical features. With recent advancement in hardware and other technologies, smart

healthcare analytics is gaining traction, and like other application domains, we are

likely to experience a sharp leap in healthcare technologies and systems in the near

future.

Next-generation healthcare systems are expected to integrate various types of

EHR data and provide a holistic data-driven approach to predict and pre-empt ill-

nesses, improve patient care and treatment, and ease the burden of clinicians by pro-

viding timely and assistive recommendations. Below, we discuss several applications

that are likely to attract attention and interest in the near future.

Treatment recommendation system for doctors: Through various levels of

automation in diagnosis model and prognosis prediction, the system may improve

the medical treatment process in different degrees from helping doctors to make

decisions (e.g. visualize cohort information) to outperforming doctors in treatment

planning and recommendation.

Treatment explanation system for patients: Doctors may not have sufficient time

to explain treatment plans to the patients in detail or may not be able to express

clearly to the patients. An automatic treatment explanation system may be able to

improve patient treatment compliance as well as the transparency of healthcare. Fur-

ther, patients can review the plans anytime, anywhere.

Real-time surgical operation suggestion: Lots of emergency situations may happen

during surgical operations. Armed with real-time sensors and reinforcement learning

models, the machine may be able to deliver a better contingency plan in a much

shorter time and with more accurate decision making.

Data-driven drug combination study: Drug combination discovery used to be con-

sidered as a hard problem due to the insufficiency of clinical data. An integrated

system with better EHR data analytics may be able to quantify the effect of drug

combinations and also discover more valuable drug combination patterns. This study

can be very useful for personalized medicine recommendations, which can further

help to provide a more effective healthcare.
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We are looking forward to more clinical advances and healthcare products being

brought to the table by both the data science and medical communities. After all,

with more data and higher computational capacity, deep analytics can lead to deeper

insights and hence better decisions.
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